Name:

Period:

Instructions:

1.

AP Physics C: Mechanics

SUMMER ASSIGNMENT 2020:

Basic Physics Review + Intro to Physics Calculus

Read pages 1 — 12 (there are a few practice questions mixed in)

2. Complete the practice at the end of this packet (pages 13 — 19)

e This will be due shortly after school starts in the fall (this will NOT be due on the first day).
e We will be covering this material very quickly in the first couple of days in class.
e |n order to be best prepared, please complete the two items outlined above.

Measurement in Physics

Stands for “System International”

Three fundamental units for length, mass and time:

Sl Quantity | SI Unit
Length Meter
Mass Kilogram
Time Second
Sl Units
e There will be other units to consider throughout the course — from the Physics C formula chart:
meter, m mole, mol watt, \\4 farad, F
UNIT kilogram, kg hertz, Hz coulomb, C tesla, T
SYMBOLS second, S newton, N volt, \"% degree Celsius, °C
ampere, A pascal, Pa ohm, Q electron volt, eV
kelvin, K joule, J henry, H
From the Physics C formula chart:
Dimensional Analysis:
PREFIXES
Factor | Prefix | Symbol
10 giga G Sup/pose we want to convert 65 mph to ft/s or
m/s.
6
Common 10 e v Nihes i 52801 _ 65x1x1x5280 oS
i 10° | kio k mtes  lhgat | Lpin 5280t _ 65x1x1x5280 _ g5J7
Prefixes 65 Jotir GOmin G0sec Dike = Ix60x60x1
1072 centi c
107 milli m i meter 951
-6 | micro 95 e Py~ 29 m/s
10 u g 328I X3
1072 nano n
102 | pico P
Trig Functions
2z G Adjacent
. 2 Sing = __Opposite . osg = __Adacent
Sine é% Hypotenuse Cosine Hypotenuse
) Adjacent
-
- @ [
Tangent //‘/ g Tang = __Opposite Pythagorean b
g et P b3 Ad)acent Theorem
" | a
Adjacent a%+ b?=c?




Right Triangle
VALUES OF TRIGONOMETRIC FUNCTIONS FOR COMMON ANGLES P +b?=c?
From [} 0 30° 37 45° 53° 60° 90° g a
smo = —
your sin@ 0 1/2 35 | 2/2 | 4/5 | B2 1 c
formula c
cosé 1 B2 | 45 | 22 | 35 1/2 0 cosf =2 e
chart c peal’) 90H
tan 6 0 V33 | 3/4 1 4/3 B oo ; b
tan@ = —
b
Scalars & Vectors
. itv i Scal Magnitud .
° Scala'r. any quantity |n. Ex:?n?):e agnitude . Vector. a.ny ' Vector Magnitude
physics that has magnitude Speed o guantity in physics & Direction
only (no direction) that has both Velocity 20 m/s, N
. _ . Distance 10m . X
e  Magnitude = a numerical magnitude and Acceleration |10 m/s/s, E
value with units Age 15 years direction Force 5 N, West
e Tvoi -
ot 1500 yplcaIIY indicated )
calories by drawing an arrow above the symbol: v ¥, 4, F

Vector Addition: If two similar vectors point in the SAME direction, add them.

Example: A man walks 54.5 meters east, then another 30
meters east. Calculate his displacement relative to where he
started?

54.5m, E * 30mE Notice that the SIZE of
the arrow conveys
MAGNITUDE and the
84.5m, E way it was drawn
conveys DIRECTION.

Vector Subtraction: If two similar vectors point in OPPOSITE directions, subtract them.

Example: A man walks 54.5 meters east, then 30
meters west. Calculate his displacement relative to
where he started?

54.5m, E

30 m, W

245m, E

When two vectors are perpendicular, you must use the PYTHAGOREAN THEOREM.
A man walks 95 km, East then 55

km, north. Calculate his
RESULTANT DISPLACEMENT.

o =a*+b* > c=\a* +b’
55km,N ¢ =Resultant=+/95% +55°

““““““ - ¢ =+12050 =109.8 km

95 km,E

Just putting North of East on the answer is NOT specific enough
for the direction. We MUST find the VALUE of the angle.

4

To find the value of the angle we
109.8 km . use a Trig function called
55km, N TANGENT.
"""""" ite side 55
opposite side 33 _ 05789

Tan6 = =
=78 NofE adjacent side 95

95 km,E 6 =Tan™(0.5789) =30°

109.8km @ 30° NofE




1. Greek Alphabet
Memorize it, practice writing it, practice saying it, and learn to love it. We won’t use all of the symbols this year, but it will
help you to keep up with new content and equations...plus it will help you in college if you join a fraternity or sorority.

A ALPHA al-an N NU rew] |alpha A« nu N v
B BETA bay-tah = XI ~EYE |beta B f xi E §
[T GAMMA gam-ah O OMICRON omm-i-cron| |g@mma r v omicron O o
A DELTA derta I P pie| |delta A 4 pi n =
E EPSILON epsi-on P RHO roe| |epsilon E e rho P p
7 7ETA zay-ah 2 SIGMA sig-mah| |2zeta zZ g sigma I o
H ETA ay-tah T TAU aw| |eta H g tau T t
(® THETA thay-tah Y UPSILON  oppsilon| [theta © @ upsilon Y v
[ 10TA ce-o-tah @D PHI fie| |iota I phi ® ¢
K KAPPA cap-ah X CHI kEYE| |kappa K « chi X x
A LAMBDA lamb-dah ‘¥ PSI sigh| |lambda A A psi Yoy
M MU mew () OMEGA o-may-gah| |mu M u omega Q w

2. Rules of Differentiation

In algebra, you were taught how to find the slope of a straight line, both by interpretation of a linear function (for
example, we know that y = 2x + 3 has a slope of 2 because the slope is the coefficient of the x term) and with the
slope formula, m = (yz - y1)/(xz - x1). However, for non-linear functions, the first method cannot be used, and the
second can only provide an average slope over an interval.

Calculus provides us with a way to find the slope at any point along any function, whether it is linear or not. This is
done by measuring the slope of a line tangent to the curve at that point. Examples of a few tangent lines are shown
below.

Each of the lines is tangent to the graph of f(x) at the corresponding point. Notice that the lines seem to follow
where the function would be if it continued in either direction with a constant slope. In calculus, we use a method
known as differentiation to allow us to find the slopes of these tangent lines.

Before we begin learning how to differentiate, it is important to understand a few things. Looking at a linear
function, slope is a rate of change. More specifically, it is the rate of change of y with respect to x. In simpler terms,
the slope of a line tells us how much the y value changes for each increment that x changes. For linear functions, this
value remains constant. However, the rate of change of a non-linear function can't be a constant, leaving only one
possibility: it is another function.



This brings us to differentiation, which is the process of using a given function to find the function representing its
rate of change, called its derivative. For a function f(x), the derivative of f(x) is denoted f’(x), pronounced “f prime of
x". Here, we will only cover simple polynomials, as they are the primary type of function on the AP Physics C exam.
Later during the year we will review how to take derivatives of trigonometric functions.

Rule #1: The Constant Rule
If f(x) = ¢, where c is any constant, f’(x) =0

Example: f{x) =1 os

The graph to the right shows the function f(x) = 1. The graphis a e e R T S TR
horizontal line, so the slope of the line at all points is equal to zero.
Therefore, the derivative f’(x)=0

Example: f{x) =-10 2 f’(x) =0
Example: f{x) = 3p, where p is a constant = f’(x) =0 (any number multiplied by a constant is also a constant)
Rule #2: The Power Rule

If f{x) = x", then f’(x) = nx™*

So if fix) = x3, then using the power rule, n = 3 and n-1 = 2, which means the derivative f’(x) = nx™* = 3x>* = 3x?
Example: f(x) = x3, so f’(x) = 2x* = 2x (no exponent written on x 2 x)

If we wanted to apply this equation at a particular point, we can find the slope of the tangent line at that point.

For example, when x =1, f’(1) = 2(1) = 2 so the slope of the tangent line is 2. You can A Joe
then substitute the slope and the (x,y) coordinates for this point into the y=mx+b /
formula for a line to find the y-intercept. | =21

Whenx=1, f(x)=1so0 b=y-mx=1-(2)(1)=-1 L

=Y

The equation for the tangent line at x=1 is y = 2x-1, which has been plotted on the ] / 1
graph, as shown. ;

If this were a physics problem, then x could be time and y could be position, which means the slope would be
velocity. The slope at time = 1 second would be the rate of change of position over time, aka velocity. Therefore the
derivate would give us the slope of the tangent line, which represents the instantaneous velocity, in this case 2 m/s.

If we were to evaluate the derivative at time = 2 seconds, then we would find that the derivative f’(2) = 2(2) = 4,
which in our application would mean that at t = 2 seconds, the instantaneous velocity would now be 4 m/s.

This is a huge improvement over algebra-based physics, in which we could find only the instantaneous velocity if
velocity was constant (straight line portion of a position vs. time graph) or average velocity if the graph of position
vs. time was curved.

Example: f(x) =x,s0 f(x) = 1x°=1 (any number to the power of 0is 1, so x° = 1)

Rule #3: The Constant Multiple Rule
If f(x) = c-g(x), where c is some constant, then f’(x) = c-g’(x)

Example: f(x) = 2x3, so f’(x) = 2(2x}) = 4x

Example: f(x) = 5%, so f’(x) = 5(1x%) =5



Rule #4: The Sum and Difference Rules
If f{x) = g(x) + h(x), then f’(x) = g’(x) + h’(x)
If f{x) = g(x) - h(x), then f’(x) = g’(x) — h’(x)

This rule looks more complicated than it actually is because it essentially says that you can treat each term in a polynomial
as individual functions added together, allowing you to apply the power rule to each term.

Example: f(x) = x> +x2

Use the power rule on x* = 3x2and x2 22x*
Add the result of the two power rules such that f’(x) = 3x% + 2x

Example: f{x) = 2x*- 3x, so f'(x) = 4x— 3

Example: f(x) = 5x* + 2x3 - x* - 3x + 5, s0 f'(x) = 20x3 + 6x* —2x — 3 (the derivative of 5 is 0 since it is a constant)

Using just these four simple rules, it is possible to take the derivative of any simple polynomial containing only one
variable, like those in the examples for rule #4. More complex polynomials can be converted into simpler polynomials
with a little manipulation.

If the function has parentheses, it can be turned into a simple polynomial by distributing.

Example: f(x) = (6x)(x+3) = 6x?+18x, such that f’(x) = 12x+18.
If the function has a root, it can be turned into a simple polynomial by converting to a power.

Example: f(x) = —2~/x =-2x*%, such that f’(x) = -2(1/4)x¥** = -1/2 x¥* .

Determine the derivative for each of the following functions and write the result in the blank provided in simplified
format. Answers should be in the form of an equation, not an expression (For example, f'(x)=cx? rather than just cx?).

a.f(x)=5
b. v(t) =8t +3
c.y=5/4x

d. p(v) = 65v




3. Rates of Change

The derivative represents a rate of change of a dependent variable with respect to changes in an independent
variable. For example, the flow rate of water through a pipe would be the rate of change of the volume with respect
to time if the volume of water exiting the pipe is a function of time.

Example: Water is flowing out of a water tower in such a way that after t minutes the volume of water in the tower
in gallons is modeled by the equation V(t) = 10,000 — 10t — t>. Determine how fast the water is flowing after
2 minutes.

The speed the water is flowing would be calculated as dV /dt, so we need to take the derivative of the
volume equation with respect to time.

flow rate =5- ==-(10,000 - 10t~ t*) = —10 — 3¢
The result above gives the flow rate out of the water tower in units of gallons/minute for any time t. The
guestion wants the flow rate at 2 minutes, so we just need to substitute in t = 2 minutes into the equation
above, and we find that the flow rate at this time is -22 gal/min.

But what about the flow rate at other times? Sometimes graphing a function that is provided or derived can
give meaningful information to answer conceptual questions, and you are often required to choose
appropriate graphs or sketch graphs for different scenarios on the AP exam.
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Graph of volume vs. time with volume in gallons plotted Graph of flow rate vs. time with flow rate in gal/min
on the y-axis and time in minutes plotted on the x-axis. plotted on the y-axis and time in minutes plotted on the
X-axis.

The graphs above represent the volume and flow rate equations for the water tower example. Since the
volume equation is non-linear, its slope, represented by the flow rate, is constantly changing. As time
increases, the flow rate is increasingly negative as a larger volume of water leaves the water tower as each
minute passes. Substituting in t = 3 minutes into the flow rate equation gives a flow rate of -37 gal/min,
which is larger than at 2 minutes.

While you will not be calculating flow rates in AP Physics C, this process of applying derivatives and analyzing their
meaning is a valuable skill. Let’s take a look at some physics examples from kinematics and other units and practice
applying derivatives. You may wish to review kinematics and an AP Physics C formula sheet prior to starting this
section.



The most basic way to apply derivatives to physics is through kinematics when analyzing position, displacement,
velocity, and acceleration. Upon analyzing these properties of motion, you may notice that velocity is the rate of
change of position over time, and acceleration is the rate of change of velocity over time. This means that velocity is
the derivative of position with respect to time, and acceleration is the derivative of velocity with respect to time.

Knowing this information, we see that for any position function x(t), x'(t) = v(t), the velocity function, and v'(t) = a(t),
the acceleration function.

For example, one of our favorite kinematic equations relates position and time: x = xo + vot + % at? . This equation is
the same on the AP Physics 1 formula sheet as on the AP Physics C formula sheet. Note that for any problem using
this equation, a, vo and xo are all constants, only x and t are variables. We can rewrite this function in more of a math
format and take the derivative:

v=u, +at

x(t) =% at? + vot + xo o 1
X(t) = % a(2t)) + vo(1t%) +0 AR L

=at+vo G a
v =y +2a(x—xg)

Since v(t) = x’(t), this gives us v(t) = vo + at, which is another kinematic equation on the formula chart.

For any graph, the derivative of the function would give you the slope of the tangent line, which represents the
instantaneous rate of change of the y-axis variable vs the x-axis variable. So the derivative can be applied throughout physics
and is not limited to kinematics.

A , . . .
Without Calculus: Ey =227Nh 1s the average rate of change of y with respect to X over the interval (x;. x;)

X, =X

d
With Calculus: d_y 1s the rate of change of y with respect to X ; also the mstantaneous rate of change.
X

Note on notation: The derivative x (dependent variable) with respect to t (independent variable) can be written in several
ways: x’(t), x’ or dx/dt. | generally prefer the first or third methods of notation because they indicate both the dependent
and independent variables.

There are more physics variables that are defined as rates of change. For example, current is the rate of flow of charge over
time (I = dq/dt), power is the rate of change of energy over time (P = dU/dt), and the strength of the electric field is
negative the rate of change of electric potential with respect to distance (E = —dV /dx). Some of these calculus-based
definitions of variables are present on the AP formula sheet, others you will be expected to memorize.

For each of the graphs below, identify the variable that is represented by the derivative of the dependent variable
with respect to the independent variable.

VARV VIRV




4. Minima and Maxima ¥

Often a function reaches a local maximum or a local minimum. The sine function in the graph /

to the right has a maximum at x = n/2 and a minimum at x = 3w /2. Extrema are easily / \
recognized on a graph, but you can identify maximums and minimums analytically without

graphing using derivatives. \

Recall that the derivative of a function is the slope of the tangent line at a particular point.

Several tangent lines are show on the diagram below. =

/ function: ¥ = sin x

The tangent line drawn for any maximum or
minimum will have a slope of zero.

The tangent lines on either side of a maximum or
minimum will switch signs from + to —for a
maximum, and from —to + for a minimum, as you
move from left to right on the graph.

Since the slopes of the tangent lines are zero at a local maximum or minimum, this means that the derivative is also
zero at these points.

You will learn a very systemic approach to evaluating maxima and minima using the First and Second Derivative Tests
in your calculus course. The following abbreviated procedure works for smooth line, continuous curves with no sharp
points or discontinuities.

To find a maximum or minimum of a function y(x):
1. Take the derivative y'(x)
2. Set the derivative equal to zero.
3. Solve for x.
- The x values found using these methods are called critical points
4. Substitute the x values into the original function y(x) to find the corresponding y values.
- These values correspond to the critical points, but not all critical points are maxes or mins,|

In some cases, it may be necessary to determine whether the y values corresponding to the critical points are maxes,
mins, or neither. This is needed for more complex functions for which there may be multiple max/min points for the
range of values you are interested in. You will most likely be working with quadratic equations, which will have either
one minimum or one maximum. The last step below can be used to verify whether a y-value corresponding to a critical
point is @ maximum or minimum.

5. Choose an x value just to the left of the critical point and another to the right of the critical point and substitute into
the derivative y'(x).
= Maximum: y'(x) is (+) to the left of the critical point and (-) to the right of the critical point
= Minimum: y'(x) is (-) to the left of the critical point and (+) to the right of the critical point
= Neither: y'(x) has the same sign on either side

It is much easier to find maxima and minima using the graphing functions of your favorite graphing calculator, and this
works for functions with numerical values, such as f(x) = 6x* + 2, but would be trickier (although still possible with
some tweaks and substitutions) for non-numerical equations, such as v(t) = —kt> + b. When you work the practice
problems after the examples, you can (and should) check your answers using your calculator, but you need to work
the problems by hand.



5. Indefinite Integrals (Antiderivatives)
Differentiation is a useful tool for physics, however it cannot solve all of our problems. For example, what if you
want to go backwards, such as from a velocity function to its position function? Differentiation cannot go backwards
like this, however, calculus has another tool for this task: integration. There are two broad types of integration:
indefinite and definite. Here, we will start with indefinite integration and its applications, then continue to definite
integration and its applications.

Like differentiation, indefinite integration is a process that follows certain rules. Integration also has its own special
notation, which looks something like the following: [ f(x)dx. The symbol [ tells you that you need to integrate, f(x) is
the function to be integrated, and dx tells you that you are integrating with respect to x. As long as the variable
after d matches the variable in the function and there are no other variables in the function, the following rules
apply exactly.

Rule #1: Constant Rule of Integration
J k dx = kx + ¢, where k and c are constants.

Example: [1dx=1x+c=x+cC

Note the +c that appears after integration. This is called the constant of integration, and must be added at the end of the
solution to any indefinite integration problem.

The following functions all have a slope of 1: f{x) = x, f(x) = x + 1, f(x) = x + 3, etc. Therefore flozassc=a
when you take the derivative of any of these functions, f ’(x) = 1 for all of them.

Fi)mx+2(Cu2)

4 /
/N,H—n'lll'-ll
2 F=x  (C=()
Taking the integral undoes the derivative giving you the original function back. However, you / FOdmxe 1{Cmet)
can’t get the constant back because the derivative of any constant is 0. We therefore place a / ./ s
+c after the solution to the integral to represent all the possible solutions. This is called the / :

general solution. The image to right shows a selection of possible solutions to the integral in /
this example for different values of the constant. Note that they all have a slope of 1. A
specific solution can be found by substituting in values for c.

A good way to check to see if you did the integration correctly is to take the derivative of your answer. If you get the
original function, then your solution was correct. Do not forget the +c !

Example: [-7dx=-7x+¢
Example: [4p dx=4px +c (Assuming that p is a constant)

Example: [dx=f1dx=x+c

Rule #2: Power Rule of Integration
[ x"dx = (x™)/(n+1) + ¢

Example: [ x°dx = (x**)/(2+1) + c=x°/3 + ¢
Example: [ x°dx =x°/4 + ¢
Example: [ x dx=[x*dx=x%/2+¢

Note that this rule does not work for integrating x* = 1/x, as it would result in x°/0, which is undefined. There is a separate
rule for this involving natural logarithms, but is not necessary to cover at this time.

Rule #3: Zero Rule of Integration
Jodx=c

The derivative of any constant is zero, so the antiderivative (integral) of zero is all constants.

Rule #4: Constant Multiple Rule of Integration
Jkfix) dx =k | fix) dx

Example: [ 2x dx = 2f x dx = 2(x*/2) +c=x*+¢

Example: [ 5x%dx = 5[ x%dx =5x°/3 + ¢



Rule #5: Sum and Difference Rules of Integration
J1(x) + g(x)dx = | fix)dx + | g(x)dx
J1x) - g(x)dx = J fix)dx - | g(x)dx

This rule is very similar to the sum and difference rule for derivatives.
Example: [ (x* + x?) dx

Use the power rule on x* = x%/4 and x2 = x3/3
Add the result of the two power rules and the constant such that [ (x* + x?) dx =x%/4 +x*/3 +¢

You will only get one constant each time, not one for each term, although the final constant is the sum of the two
constants from the intermediate steps.

Parentheses are not always used to isolate the integrand. Instead, the polynomial to be integrated is bookmarked by
the [ symbol and dx.

Example: [ 3x?+5dx=3x/3+5x+c=x’+5x +¢
Example: [ 2 +4x2 +3x + 1 dx =2X°/4 + 4x3/3 + 3x%/2 + x + c=X*/2 + 4x*/3 + 3x%/2 +x + ¢

6. Applications of the Indefinite Integral

The indefinite integral is useful, but in physics, we don’t want all possible solutions, we want the particular solution
that fits the given conditions for the problem, so we need a method for finding c.

In order to find ¢, you need to know some additional information, which is given as a set of initial conditions. For
example, the problem might be to integrate f(x) = 3x + 2, and the initial condition might be f{1) = 3. So in order to
solve this, start with your given function:

Given: fix)=3x+2

Setup the integral: fix) =ff'(x)dx=[3x+2dx

Integrate: fix)=3x%/2+2x+c¢ € This is the general solution
Substitute initial condition: fl1)=3(1)%/2+2(1) +c

Simplify: 3=3/2+2+c

Solve for c: c=-1/2

Substitute c into f(x): fix)=33/2+2x—-% € This is the particular solution

Now we know exactly what f(x) is, with only one variable.

Next, we must apply this to physics. The most basic application is again in kinematics. Remember that the derivative
of position is velocity, and the derivative of velocity is acceleration. Now, notice that integration is, essentially, the
reverse of differentiation, so that means that the integral of acceleration is velocity, and the integral of velocity is
position.

For example, consider an object that is dropped from rest from a height of 100 m. If we wanted to derive an equation
for the velocity of the object at any time t, we could take the derivative of the vertical position function, if it was
given, or use a kinematic equation. However, we can also start with the acceleration equation and integrate to find
the velocity equation, but we don’t know that either...or do we?

If we assume the object acts as a projectile, then the acceleration of the object is a constant -9.8 m/s2 We can
therefore define a(t) = -9.8 and integrate with respect to t.

Given: a(t)=-9.8
Integrate: fa(t)dt=[-9.8dt=-9.8t +¢

Since the integral of acceleration is velocity, then v(t) = -9.8t + c. But we need to eliminate ¢ from the equation so that
we get only the solution that matches the initial conditions. But what are the initial conditions?

Since the object was dropped from rest, we know that the starting velocity is zero, which means that when t =0,
v(0)=0, and substituting in:

General Equation: v(t)=-9.8t +¢
Substitute Initial Condition: v(0) =-9.8 (0) +¢
Solve: 0=c

Therefore since ¢ = 0, the velocity function for this particular example is v(t) = -9.8t with units of m/s.

Furthermore, we can continue this example to derive a function for the vertical position of the object at any time t
since the integral of the velocity function is position.

Given: v(t) =-9.8t
Integrate: [v(t)dt =[-9.8tdt =-9.8(t3/2) +c =-4.9t* + ¢

Therefore the general position function is y(t) = -4.9t? + ¢, but we need to find the particular solution that meets the
initial condition.
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We know that the object started at a height of 100 m, which means that at t = 0, y(0) = 100, so substituting in:

General Equation: y(t)=-4.9t% + ¢
Substitute Initial Condition: y(0) = -4.9(0)* + ¢
Solve: 100=c

Since ¢ = 100, the vertical position function for this particular example is y(t) = -4.9t> + 100.

Therefore, y(t), v(t), and a(t) can be derived from a single equation and some initial conditions, thus describing the
motion at any point in time.

7. Definite Integrals

Now that we have learned indefinite integration, we can begin learning definite integration. Definite integration uses
the same set of rules as indefinite integration, but the notation and method have some additions. Also, the answer
to a definite integral is not a function, but a number. We will talk more about the meaning of this number later. First,
take a look at the notation for a definite integral:

| *fax

*3

Notice that the only change in notation is the addition of x1 and xz at the top and bottom of the integral symbol.
These are called the limits of integration, and define the interval on which you are performing the definite
integration. x1 is the lower limit, and thus is usually a lower number, and xz is the upper limit, and thus usually a
higher number. This idea will become more clear as we practice a few problems, but in order to do this, we must
look at arguably the most important theorem in calculus:

The Fundamental Theorem of Calculus

2 f(dx = f(x;) — f(xy)

1

This theorem instructs us to take the integral, but instead of adding a +c onto the end of the antiderivative, you substitute the
limits of integration into the antiderivative and subtract to get a single, numerical answer. The following example will be used
to demonstrate why the +c is no longer necessary.

Example: f27 3dx

Indefinite Integration: |3 dx=3x+c

Substitute in limits: =(3*7+c)-(3*2+¢)
Distribute the (-): =21+c-6-¢C (c cancels from the solution)
Simplify: =21-6

=15

Note that the ¢ from each equation cancels out because of the distribution of the negative sign to the second equation. This
will happen in every problem, so the +c can be ignored in definite integration. Instead of writing the antiderivative and
eliminating the +c algebraically, you can use the notation f(x) |:f to indicate that you will evaluate the antiderivative
between the two limits of integration.

5

- 2
Example: [ : —3x+4dx= a: + 4x € Integrate, showing limits
= [%5)2 +4(5) ] - [_3(2—2)2 +4(2) ] € Substitute in limits
=-39/2 € Solve
=19.5

Note that in calculus, you would normally leave the answer as a simplified improper fraction, like -39/2. In physics, we
generally use decimal answers, like -19.5. Also, be very careful to distribute the negative to all terms of the second equation.
Failing to distribute this negative properly can result in radically incorrect answers.

Example: [*Vx? + 2x dx = [ x%/* + 2x dx

2 2 .
_ x7/% 2

7/4 N Y
/4 o(s)3 2y7/4 508
_[@ 2@ ]_ @7 2@ ]
7/4 3 7/4 3
=16.5

Simplifying the above expression algebraically would be painful. Feel free to use your calculators to evaluate the function at
the limits to get the decimal answer.
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8. Area Under the Curve

Now that we have seen how to use definite integration on polynomials, we need to understand what it means and

when it is applicable to physics. The more relevant explanation of what a definite integral means would be the total

change in f(x) from x: to x2. Graphically, the definite integral represents the area under the curve f’(x) between the

limits of integration.

For example, if you are given a velocity function, v(t), and took the
definite integral from ti to t7, the result would be the change in

Velocity

position (aka displacement) over the time interval.

If you did the same to an acceleration function, a(t), then you dt
would be finding the change in velocity over that time interval.

Time
'

In algebra-based physics, we could only find the actual area under the curve for a given graph if the graph was a
standard geometric shape such as a rectangle or triangle or we approximated the area under the curve with a
geometric shape. With calculus, we can find the area under the curve of any function without relying on a graph.

Example: Find the area under y=3x2 between x=1 and x=5.

Setup the integral: Area = || 15 3x%dx
215
Evaluate: Sl Py I
2 1y
Substitute: =(5)°*-()?
Solve: =124

Example: If my velocity is given by v = 4t°+t°+2 in m/s, how far am | from the starting point after 2 seconds?

The question is asking for my displacement at t = 2 seconds, which would be the
area under the curve of the velocity function. If I look at a graph of this function,
the area under the curve is the area in the first quadrant bounded by the x-axis,

y-axis, the curve and the line x=2. Since this is not a simple shape | need to
integrate the velocity function between the limits of t =0 seconds and t =2
seconds to find the displacement.

Displacement = f: 4t +t* +2 dt
e 8 2
R
4 3 0
s 2
=t + T+ 2t|
3 0

=[2¢+Z+22)) - [0t + =+ 2(0)]
=227m

Note that the displacement is not always the same thing as the total distance
travelled. In the graph to the right, the velocity function passes below the x-
axis between t=14 and t=15 seconds, which would yield a negative value for
the integral between those limits. In terms of displacement, this is a negative
displacement indicating that the object is moving back towards the starting
point, such that the displacement from t=0 to t=15 seconds is smaller than
the displacement from t=0 to t=14 seconds. Therefore the distance travelled
by the object after 15 seconds has passed is larger than the magnitude of the
displacement.

(ms')

1

L2 3 4 8 6 7 & 0 100 a2 o

For each of the graphs below, identify the variable that is represented by the area under the curve.

v
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Name: Period:

AP Physics C: Mechanics
Introduction to Derivatives

1
Differentiate (find the derivative of) each of the following functions with respect to ¢. (HINT: Remember, x_12 = x72 AND xz = +/x )

1. x(t) =5t8 2. x(t) =4t> +t 3. x(t) =4t>—-5t—3

4. x(t) = 3t% 5 x(t) = t% 6. x(t) = 4t? —5t*

7. x(t) = —4t-5 8. x(t) = —247 5. x(t) =23
3 _ 5 2 3 4
10. x(t) = = 11. x(t) = —3t> — 5t 12. x(t) = =" n

13. x(t) = 4ta3® 14. x(t) = —t3 + 5t% + 8t — 48 15. x(t) =7




Name:

Period:

AP Physics C: Mechanics

INTEGKALS - DERIVATIVES - KINEMATICS REVIEW

Integrate each of the following functions with respect to x.

1. [ —6xdx 2. [x%dx 3. [(5x® —2x* + x + 3)dx
4. [ —24x°dx 5. [(x®+2x)dx 6. [(x*—x3+x%)dx
7. [4x"cdx 8. [(Bx7%—4x"3)dx 9. [(—9x? + 10x)dx

Solve for dx/dt for each of the following functions.

10. x(t) = 8t°

11. x(t) = 4t=3 + 2tY/?

12. x(t) = 2t — 5t2

13. x(t) = /.5

14. x(t) = ¢t

15. x(t) = =3t +3t"3 + 2t

16. x(£) =7t +6

17. x(t) = %t‘z

18. x(t) = §t3 +5¢t—¢t3

19. A car is sitting at a red light on Woodlands Parkway. When the light turns
green, the car begins to accelerate at a constant rate, as illustrated by
the velocity vs. time graph to the right.

a.

Solve for the car’s acceleration?

Use the graph to estimate the car’s displacement from

t =0seconds tot =5 seconds?

Velocity (m/s)

Sketch an acceleration vs. time graph representing the motion of the car.

What is the significance of the area under the curve for this graph (i.e,
what variable does it represent)?

N W s O,

0 1 2 3 4
Time (s)



A Q T T T Q T Q T T T Q >
0 2 3 4 5 6 7 8 9 10 m
B QO Q Q T Q T T T Q T >
0 1 2 3 4 5 6 7 8 9 10 m
C Q T T Q T T Q T T Q —»
0 | 2 3 4 5 6 7 8 9 10 m
D T Q T | T T Q U T Q Q >
0 | 2 4 5 6 7 8 9 10 m

20. In each case shown above, a sphere is moving from left to right next to a tape marked in meters. A strobe (flash)
photograph is taken every second, and the location of the sphere is recorded. The total time intervals shown are not
the same for all spheres.

a. Rank the magnitude of the displacement over the first 3 seconds from greatest to least. Explain your reasoning.

b. Rank the magnitude of the average velocity over the first 3 seconds from greatest to least. Explain your reasoning.

¢. Rank the magnitude of the average velocity over the first 2 seconds from greatest to least. Explain your reasoning.

21. The first 10 meters of a 100-meter dash are covered in 2 seconds by a sprinter who starts from rest and accelerates
with a constant acceleration. The remaining 90 meters are run with the same velocity the sprinter had after 2 seconds.

a. Determine the sprinter’s constant acceleration during the first 2 seconds.

b. Determine the sprinter’s velocity after 2 seconds have elapsed.

c. Determine the total time needed to run the full 100 meters.
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22. The drawings above represent strobe (flash) photographs of a ball moving in the direction of the arrow. The circles

represent the positions of the ball at succeeding instants of time. The time interval between successive positions is
the same in all cases.

a. Rank the magnitude of the ball’s average velocity in the last time interval from greatest to least. Explain your
reasoning.

b. Rank the magnitude of the acceleration based on the drawings from greatest to least. Explain your reasoning.

23. Sarah throws a ball straight up in the air with an initial velocity of 19.62 m/s.

a. How long will the ball be in the air before Sarah catches it? (Assume it is caught at the same height from which
it is thrown.)

b. What maximum height will the ball reach?

c. Sketch a position vs. time, velocity vs. time and acceleration vs. time graph representing the ball’s motion.

24. A sky diver is using a camera to film his jump. Near the end of his jump, when he is at a height of 50m and falling at a
constant rate of 10 m/s, he accidentally drops his camera.

a. With what velocity does the camera strike the ground?

b. How many seconds does it take for the camera to strike the ground after it is dropped?

16



c. What if (for some bizarre reason) the sky diver threw the camera upward with a velocity of 10m/s (relative to
the ground) and let the camera fall to the ground. How would the velocity that the camera struck the ground
with compare to that of part (a)? How would the time in flight compare to that of part (b)?

Vo -7 Ymax N D

25. As part of a Halloween festival, a large pumpkin is fired from a cannon, as shown in the image above. It emerges out of
the cannon at an angle of 60 degrees above the horizontal with a speed of 20 m/s. Air resistance is negligible.

a. At which of the points O, A,B,C, or D is the magnitude of the vertical component of the pumpkin’s velocity (its
vertical speed) the greatest? The least?

b. At which of the points O, A, B, C, or D is the magnitude of the horizontal component of the pumpkin’s velocity
(its horizontal speed) the greatest? The least?

c. At which points is the magnitude of the acceleration the greatest? The least?

d. What is the direction of the pumpkin’s acceleration at each point?

26. For each of the following scenarios, sketch position vs. time and a velocity vs. time graphs. Include appropriate
numerical scales along both axes. A small amount of computation may be necessary.

a. Parachutist Jane opens her parachute at an altitude of 1500 meters. She then descends slowly to earth at a
steady speed of 15 m/s. Start your graphs as her parachute opens.

17



b. Trucker Bob starts the day 120 km west of Denver. He drives east for 3 hours at an average 90 km/h before
stopping for his coffee break. Let Denver be located at x = 0 km and assume the x-axis points to the east.

c. Sprinter Lisa is in the ready position at the starting line of the 100-meter dash. When the shot is fired, she
accelerates from rest at a steady 8 m/s? until she crosses the finish line.

d. Crazy teenage driver Jason is cruising down Research Forest Dr. A stop light turns green and he floors it,
accelerating at 10 m/s? until he reaches a max speed of 30 m/s. He is only able to maintain this speed for 30
seconds until he encounters another red light and must quickly decelerate to a stop at 20 m/s?.

27. A cart rolling at a constant velocity fires a ball straight up. Ignore the effects of air resistance.

a. When the ball comes down, will it land in front of the launching tube, behind the launching tube, or directly in
it? Explain your answer.

b. Will your answer change if the cart is accelerating in the forward direction? If so, how?

28. Four balls are simultaneously launched with the same speed from the same height h
above the ground, as shown to the right. At the same instant, ball 5 is released from rest 5@ 2
at the same height. Rank in order, from shortest to longest, the amount of time it takes
each of these balls to hit the ground. Explain your answer.

18



29. The graphs below show the velocity of two objects during the same time interval.

Vi Vy

2 2
! \ [
0 > 0 >

0 4 6 . 0 2 4 6
Object 1 Time, s Object 2 Time, s

(3%}

Three students are discussing the displacements of these objects for this interval.

Ariel: “I think Object 2 will have the greater displacement because it gets to a higher speed faster than Object 1.”

Brody: “Object 1 spends most of its time speeding up, but object 2 spends most of its time slowing down. Object 1
will go farther.”

Cyrus: “The displacement is found from the integral or area of the velocity graphs. But in this case we don’t know
what the integration constant or the initial position is that we need to add to the integral or area. We don’t
have enough information to find the displacement.”

Which, if any, of these three students do you agree with? Explain your reasoning.

30. A 0.50 kg cart moves on a straight horizontal track. The graph of velocity vs. time for the cart is given below.
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a. Indicate every time t for which the cart is at rest.

b. Indicate every time interval for which the speed (magnitude of velocity) of the cart is increasing.

c. Determine the horizontal position x of the cart at t = 9.0 s if the cart is located at x =2.0 mat t = 0. d.
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